Department of Computer Science \& Engineering
 National Institute of Technology Srinagar

Theory of Computation
Assignment No. 2

$6^{\text {th }}$ Sem

Spring 2020
Due date: 24-05-2020

Section I

Q1. Obtain a grammar to generate the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}+1} \mid \mathrm{n} \geq 0\right\}$.
Q2. Obtain a grammar to generate the language

$$
L=\left\{w w^{R} \mid w \varepsilon\{a, b\}^{*}\right\} \text { where } w^{R} \text { is reverse of } w .
$$

Q3. Obtain a grammar to generate the language $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} \mid \mathrm{n} \geq 0\right\}$.
Q4. Obtain a grammar to generate the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}+2} \mathrm{~b}^{\mathrm{m}} \mid \mathrm{n} \geq 0\right.$ and $\left.\mathrm{m}>\mathrm{n}\right\}$.
Q5. Obtain a grammar to generate the language $\mathrm{L}=\{\mathrm{w}:|\mathrm{w}| \bmod 5=0\}$ on $\sum=\{\mathrm{a}\}$.
Q6. Obtain a grammar to generate the set of all strings with no more than three a's when $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.

Section II

Q1. Obtain a RE to accept strings of 0's and 1's having no two consecutive zero's.
Q2. Obtain a RE to accept words with two or more letters but beginning and ending with the same letter, where $\sum=(\mathrm{a}, \mathrm{b})$.

Q3. Obtain a RE to accept a string not ending with 001 .
Q4. Obtain RE for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}, \mathrm{b}^{\mathrm{m}}, \mathrm{c}^{\mathrm{p}} \mid \mathrm{n} \leq 4, \mathrm{~m} \geq 2, \mathrm{p} \leq 2\right\}$.
Q5. Find DFA's to accept the following languages:
(i) $\mathrm{L}\left(00^{*}+010^{*} 01\right)$
(ii) $\mathrm{L}\left(0(0+1)^{*} 11\right)$

Q6. Construct an NFA for the RE's
(i) $\quad(0+1)^{*}(00+11)(0+1)^{*}$
(ii) $10+(0+11) 0^{*} 1$

Q7. Obtain a CFG on (a, b) to generate a language $L=\left\{a^{n} w^{R} b^{n} \mid w \in \sum^{*}, n \geq 1\right\}$.
Q8. Obtain a CFG on (a, b) to generate a language $L=\left\{a^{n} b^{m} \mid m>n\right.$ and $\left.n \geq 0\right\}$.

